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ABSTRACT 

 

The paper is concerned with the applicability of some new conditions for the convergence of Newton–kantorovich 
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INTRODUCTION  

 

The theory of integral equations is one of the most 

important branches of mathematical analysis, mainly 

result of its importance in boundary value problems in the 

theory of partial differential equations. The theory of 

integral equations is contacted with many different areas 

of mathematics; foremost among these are differential 

equations, theory of analytic functions and operator 

theory. 

The theory of linear singular integral equations (SIE) and 

non-linear singular integral equations (NSIE) have been 

developed significant importance during the last years as 

many engineering problems of applied mechanics and 

applied mathematics and in many problems of  

mathematical physics, such as the theory of elasticity, 

hydrodynamics, quantum mechanics, fluid mechanics and 

others. The theory of approximation methods and its 

applications for the solution of SIE and NSIE has been 

developed by many authors (Amer, 1996; Dardery, 2011, 

2017; Dardery and Allan, 2011; Jinyuan, 2000; 

Kantorovich and Akilov, 1982; Ladopoulous and Zisis, 

1996; Zabrejko and Nguen, 1987). The classical and more 

recent results on the solvability of NSIE should be 

generalized to corresponding equations with shift see 

Wolfersdorf (1985). The successful development of the 

theory of SIE and NSIE naturally stimulated the study of  

singular integral equations with shift (SIES) and nonlinear 

singular integral equations with shift (NSIES), (Amer, 

2001; Amer and Dardery, 2005; Dardery, 2011, 2014; 

Gakhov, 1966; Kravchenko and Litvinchuk, 1994; 

Litvinchuk, 1977; Nguyen, 1989). 

The theory of SIES and NSIES are an important part of 

integral equations because of its recent applications in 

many fields of physics and engineering, (Baturev, 1996; 

Kravchenko, 1995; Kravchenko, 1994). The Weiner-Hope 

equations are a natural apparatus for the solution of 

problems of synthesis of signals for linear systems with 

continuous time and stationary parameters. If the problem 

of synthesis is not stationary, then the Weiner-Hope 

method is not applicable and the problem is reduced to 

singular integral equation (Baturev, 1996; Cooper, 1971). 

 

Exact and approximate solutions of such equations 

attracted many mathematicians. The known results 

concerning on a criterion of Noetherity and index formula 

for singular integral functional operator with (Carleman 

or non-Carleman) shift (SIOS) preserving or changing the 

orientation are investigated in the case of continuous 

coefficients in the recent monograph by Kravechenko and 

Litvinchuk (1994). The Noether theory of SIOS is 

developed for a closed and open contour (Amer and 

Dardery, 2004, 2009; Dardery, 2011; Guseinov, and 

Mukhtarov, 1980; Khusnutdinov, 1989; Kravchenko et 

al., 1995; Kravchenko and Litvinchuk, 1994; Litvinchuk, 

1977). In the present paper, some new conditions for the 
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convergence of Newton-Kantorovich approximations 

have been applied to solution of the following NSIES of 

Uryson type: 
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in generalized Holder space  H  where  be a simple 

smooth closed Lyapunov contour, which divides the plane 

of the complex variable Z  into two domains, the interior 

domain 
D  and the exterior domain 

D ,  t  

homeomorphically maps   into itself with preservation 

orientation and satisfies the Carleman condition: 

                 11,,  mitttt im  ,                     (1.2) 

where 

                       ,, 01 tttt ii       

and 2m . Assume that  t'  satisfies the Holder 

condition. Moreover RR  :  is a Caratheodory 

function (i.e. function which is continuous in the last 

variable and measurable in the other variables), Also, we 

suppose that the derivative of the Caratheodory function 

),,( ut  with respect to the last variable exists and is 

also a caratheodory function. The coefficients 

    1,...,1,0,,  mitbta ii
 belong to the generalized 

Holder space  H  and   , , is a numerical 

parameter; the function  tu  is an unknown function. The 

usefulness of the following study consists in reducing the 

(hard) problem of finding zero of a nonlinear operator in a 

Banach space to the (possible simpler) problem of finding 

zero of a scalar function. 

Our problem has been studied  when 

                           1,...,1,0,0  mitai
 

 by applicability of Banach fixed-point theorem in (Amer 

and Dardery, 2004), also it has been studied where   is a 

real segment in usual Holder space in (Nguyen, 1988). 

The special case has been studied, with first order shift, in 

(Dardery, 2011). The special case of our problem has 

been studied as nonlinear integral equation, without shift, 

in the chebyshev space C, the lebesgue space 

)1(  pLp
, and orlicz space 

ML  (De Pascale and 

Zabreiko, 1998). 
 

 

2- Formulation of the problem: 

 

 Let X  and Y  be two Banach spaces, 

   RuuXuuRuB  00 ,:,  the closed ball centered 

at Xu 0
 with radius 0R , and YRuBF ),(: 0

 is 

nonlinear operator. The Newton-Kantorovich method is 

one of the basic tools for finding approximate solutions of 

the operator  

                                0)( uF                                        (2.1) 

In the corresponding iterative scheme 

          ,...)2,1,0(,
1'

1 


 nuFuFuu nnnn
        (2.2) 

One has to require in particular that the Frechet derivative 

of F at all points nu   exists and is invertible in the 

Banach space ),( YXC  of all bonded linear operators 

from X  intoY . The non-negative numbers 
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Will be of particular interest to us in what follows. 

We suppose that the Frechet derivative )(' uF of 

F satisfies at each point of ),( 0 RuB  a condition of the 

form 
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Where     ,0,0:  is monotonically increasing 

with  
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Moreover, we assume that there is another monotonically 

increasing function     ,0,0:  such that 
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We define three scalar functions on  R,0  by 
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Theorem 2.1 (De Pascale and Zabreiko, 1998). Suppose 

that the function (2.9) has a unique zero  Rr ,00   and 

that   0R . Then equation (2.1) has a solution 

),( 00 rxBx   this is unique in the ball  RuB ,0
 

Lemma 2.1 (De Pascale and Zabreiko, 1998). Suppose 

that the function (2.10) has a unique zero  Rq ,0*   and 
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that 0)(
~

R . Then the scalar sequence 
Nnnr )(  defined 

by   
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Converges monotonically to
*q  

 

Theorem 2.2 (De Pascale and Zabreiko, 1998).  Under 

the hypotheses of Lemma 2.1 the approximations (2.2) are 

defined for all n belong to the ball are converging to a 

solution of (2.1) and satisfy the estimates 

      ,...)2,1,0(,11   nrruu nnnn
,                 (2.12) 

and  

      ,...)2,1,0(,**  nrquu nn
                        (2.13) 

 

Theorem 2.3 (De Pascale and Zabreiko, 1998). Suppose 

that the sequence nnr )(  given by (2.11) converges to 

some limit )(ar . Then the approximations (2.2) are 

defined for all n belong to the ball ))(,( 0 aruB 
 , and 

satisfy the estimates (2.12) and (2.13). 

We remark that the usefulness of Theorem 2.1 consists in 

reducing the (hard) problem of finding zero of a nonlinear 

operator in a Banach space to the (possible simpler) 

problem of finding zero of a scalar function. 

 

3- Some notations and auxiliary results. 

In this section, we introduce some notations and auxiliary 

results, which will be used in the sequel. 
 

Definition 3.1 (Guseinov and Mukhtarov, 1980). We 

denote by   the class of all functions )( , defined 

on  l,0 , where l  is the length of the curve , which 

satisfies the following conditions: 

1. )(  is a modulus of continuity, 
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Definition 3.2 (Guseinov and Mukhtarov, 1980; Mikhlin 

and Prossdorf, 1986). The generalized Holder space 

 H  is the set of all continuous function  tu  such 

that  
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For  Hu  we define the norm: 
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for singular integral operator,  
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to which we associate the projection operators where I 

is the identity operator on  H  

                      ))(()( tutWu  , 

for the Carleman shift operator, and the operators 

21 , BB are defined by 

  





1

0

1 )()()(
m

i

i

i tuWtatuB ,   





1

0

2 )()()(
m

i

i

i tuWtbtuB .   

                                                                                (3.6) 

where    

           1,...,1,0)),(()(  mitutuW i

i  . 

 

Lemma 3.1 (Amer, 2001).  The singular operator S  is a 

bounded operator on the space )(H and satisfies the 

inequality  
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where 0  is a constant defined as follows : 
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where c~  is a positive constant. 

 

Theorem 3.1 (Amer and Dardery, 2004). The shift 

operators 2,1; iBi  are bounded operators on the 

generalized Holder space  H  and satisfy the 

inequality 
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Now, we study the singular integral operator   defined 

by the equality (3.1) where the function 

RRut  :),,(   satisfies the following 

condition 
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 for )(*,)(   , we have  
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    ,0,0:i  is monotonically increasing 

function with 
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where ii AA 21 ,  and 3A  are positive constants. 

 
 

Lemma 3.2.  If the function ),,( ut   satisfies the 

conditions (3.9)-(3.11), then the operator   defined by 

(3.1) is bounded on )(H  and satisfy the inequality 
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Where 21 ,  are defined constant depend on constants 

ii AA 21 ,  and 3A  (Dardery, 2011). 
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Theorem 3.2. The nonlinear singular operator 

L defined by inequality (3.2) and (3.3) is a bounded 

operator on the generalized Holder space )(H  and 

satisfy the inequality 
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constants IIII ,,, 321 and J  , (Dardery, 2011). 

 

Lemma 3.3. Let the function ),,( ust  satisfies the 

conditions (3.9)-(3.11), then the operator  uT  has 

Frechet differentiable at every fixed point )(Hu  

and its derivative given by  
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Satisfies the following condition 
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Proof. 

Let  tu0  be a fixed element in the space )(H  and 

 th  be an arbitrary element in )(H . Now we 

consider 
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 then we have the well-known formula: 
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Consequently, the operator  uT  has Frechet 

differentiable in the space )(H  and its derivative 

given by formula (3.14). Moreover, by inequalities (3.7)-

(3.9) we get 
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Theorem 3.3. If the operators 
iB  and  uL

satisfy the 

inequalities (3.8), (3.13) respectively, then the nonlinear 

singular operator  uT   is a bounded operator on the 

generalized Holder space )(H  and satisfies the 

inequality 

 
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Where ,1  are defined constants, (Dardery, 2011). 

 

4- Noether property and index formula for SIOS: 

To study the Noether condition for the operator uT  , we 

reduce this operator to the following form 
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Where 
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reduce this operator to the form 
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From the theory of singular integral operators with shift, 

(Kravchenko and Litvinchuk, 1994), the Noether 

condition for the operator uT   is given by: 
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hence the following theorem is valid 

Theorem 4.1 (Kravchenko and Litvinchuk, 1994)  

Consider the operator  
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are orientation-preserving Carleman shift operators of 

order 2m , IW m   and the matrix functions 
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ii Cyx , . Then 

ABT  is Noetherian if and only if 

the condition (4.3) and (4.4) are satisfied and the index 

formula of the Noetherian operator 
ABT   is given by: 
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5- Solution of linear singular integral equation with 

shift: 

Now, we show that the linear singular integral equation 

with shift (4.1) has a unique solution for every 
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No solutions are lost when the operators 

SWWSSWWW mm 112 ,...,,,,...,,   are applied to 

equation (4.1), hence all solutions of (4.1) are solutions of 

the system (5.1)-(5.6) and conversely. 

Let E  be the closed subspace defined by 

                                

 )(),,...,,,,...,,( 11 
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and let   be the linear operator from E  to )(H  

defined by  
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is a matrix of functions from the space )(H  

corresponding to the operator  . 

Then the system (5.1)-(5.6) can be rewritten as the form: 

EHGMHH  ,                             (5.8) 

Where 

  ,...... 11 Tmm SgWWSgSggWWggG 

 

and M  is a diagonal matrix its diagonal numbers take the 

form 
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mmm ,...,,,,...,, 1

21

11 

 

 

 

Theorem 5.1 Assume that 

                     ,0)(det  tt           (5.9) 
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Then the operator )( 0uT   is invertible, moreover 
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and 
* be the adjoint matrix of  . 

 

Proof. 

It is well know that the condition (5.9) is necessary and 

sufficient condition for the invertibility of the operator   

on E , moreover the equation (5.8) is equivalent to the 

following equation  

                  EHMHGH 
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. 

The problem of the invertibility of the operator M  

can be reduced to the following fixed-point problem 
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From condition (5.10) and the contraction theorem, it 

follows that for every EG , the operator P  has a 

unique fixed point. Then the operator M  (and 

therefore  0uT  ) is invertible and 
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Assume that  
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Where 
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Such that   )0(,)()(0 Rrrr   .  

Therefore, the following theorems are valid. 

 

Theorem 5.2 Suppose that the function (2.9) has a unique 

zero ],0[* Rr   and that   0R . Then equation (1.1) 

has a solution ),( *0* ruBu   this solution is unique in the 

ball ).,( 0 RuB  

 

Theorem 5.3 Under the hypotheses of Lemma 2.1 the 

approximation (2.2) are defined for all n belong to the 

ball ),( *0 quB , are converging to a solution 
*u  of (1.1) 

and satisfy the estimates (2.12) and (2.13).  
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